In the Laboratory of Functional and Structural Genomics we perform theoretical studies, whose main objective is to analyze and predict the three-dimensional structure of the human genome, and its relation with the genomic diversity of human populations, both natural and pathological. In particular, we investigate structural variants, copy number variants observed in various sub-populations and the groups of patients, and their three-dimensional localization in the structure of the nucleus.
We also examine the relationship of the expression levels of selected genes from their location in three-dimensional space. In addition, we use structural information to enrich the sequential genomic analysis in order to better define the function of selected genomic regions that are important in the context of personalized medicine.
For this purpose, first we are developing a variety of large-scale computational tools for analysis of whole genome sequences, the identification of structural variants, determining the statistical significance of the observed number of copies of genomic regions in selected cohorts of patients. Secondly, we evaluate their uniqueness comparing the observed changes with typical and natural genomic diversity that has been cataloged for example in the 1000 Genomes Project Consortium. Thirdly, we infer the biological function of these genomic regions using publicly available databases. Fourthly, we identify unique local three-dimensional environment for selected sites, eg. regulatory ones. In the fifth step, we analyze the impact of structural re-arrangements of those local neighborhoods on the gene expression profiles, which is related to the presence of transcription factories.